Microthreading and ;TC for Massive On-Chip Concurrency

- C.R. Jesshope, M.A. Hicks, M. Lankamp, R.C. Poss, T. Bernard, A. Pimintel, C. Grelck X
I M.W. van Tol, S. Polstra, L. Zhang, K.S. Bousias ll
— apple Computer Systems Architecture Group,Informatics Institute, University of Amsterdam, NETHERLANDS X

core

e, D JF- ; \ \ A\ e J e
= =

\j' N The Computer Systems Architecture research group is tackling significant problems in the scalability of massive on-chip
concurrency. The efficacy of the massively-parallel Microgrid architecture, ;TC language and associated toolchain are
demonstrated here, showing important progress in this vibrant research area. — SIREN 5th November 2009

1) Project Motivation and Goals 2b) The Instruction Set, Architecture and Programming Model =
,{1
Trends in microprocessor design — feature size continues to increase | = “ Microthreaded Instruction set implements blocking threads based on parameterised /
3 in line with Moore's Law, allowing increasing gate density on chips. families. These can capture all kinds of loops, function calls and asynchronous task C
' However, locality, power density and reliability are becoming limiting creation. Only the following instructions need to be added to an existing ISA:)
. . . .]
factors.Processors will become distributed and multicore! @ create — create a named, parameterised family of blocking threads
The Goals are similar in nature to all distributed systems:
o _ @ sync — associated barrier synchronisation on named family
© Sl i distrlbuisd andiliiaciue @ break — stop the execution of all other threads within current family
¢! Riccram miltiplelcerestifomi(existing)isequential code @ kill — stop the execution of all threads in a named family
° S .]
DY [EeUEs 2t @emaniane) memeEeme: Synchronised communication between adjacent threads in a family is achieved r
@ Support for legacy code through scalar i-structures in a large, distributed register file.
~ Our Solution is a scale invariant programming model from the ISA .
\ level upwards. Cone o Concurrent Composition — programs are
> > v constructed concurrently
2a) What is a Microthread? < Reg. Sync o e Black line segments represent threads
~ @ A sequence of instructions defined to form a lightweight thread \/ @ Branches in threads represent the creation of | __
@ Has it's own microcontext of registers £ subordinate thread families (parent continues) |
= o Created in named, parameterised families of many threads e Synchronisation over a subordinate family .
._ @ Smallest unit of execution in the Microthreading model o Dependencies between threads in the (
o : \ - Sre " same family (red lines in diagram)
fll *) The . TC Toolchain ‘ \ N
= = : Lat ==
= llelising C — ' - T ; T
Sé(;mpiigc Para ec'ilr?]%ﬁer hTe On-chip COMA 3a) Individual Microthreaded Core Pipeline
'_ | v]
o uTC Thread
= | Instrl#:tion
v v v Buffer
| |
MTC Core Compiler Alternative Compiler Syntax ' ' ' ’
(GCC 4.1 based) (temporary) | Translator Cluster ‘.Cluster Cluster Cluster ‘ _
e 2 3 3 3 — .
[J Data 5
! [i 7‘ d / > / / ; / —» Instructions i
HT ASM |
Y - v .Cluster Cluster © Threads are created dynamically with a
GCC and i et
Assembler and Linker luTC pTﬁ?ead‘ / 3- / 3- CEEAE 1 synchronlsmg memory
(GG Based) L @ Instructions issued from the head of the
5 B'inary :Pithreiadﬁ‘ active queue read synchronising memory
: I © |If data is available then instruction is
Y 4 d 4 0
(\ieroard Simlatar —— executed, otherwise thread suspends on
N (cyc?e accurate) Compmﬁ%n Working ; Cluster | Cluster | Cluster | Cluster | Cluster empty register
5)) . .
.) 7 == = 7 © When data is written, suspended threads are
@ Full cycle-accurate simulation of ' ’ rescheduled to execute
the Microgrid with COMA
] = i] Clusten y y 'Clusster 'Clusster The Synchronising Memory is a large register T
° .l\/Iasswe. Progressl n t1c>20Icha|nh ; file that is used to control program execution. s
‘ integration over last 12 months The processor tolerates large latencies by chea =
= A Microgrid of Microthreaded Cores (3b) = by . . Y : i
\ switching between lightweight thread (
- >] — 5 -
8 5) Experimental Results 4\ \ " - contexts (from the active queue). =

Mandlebrot Approximation Rendering

3b) The Microgrid Architecture (see central figure

A Microgrid consists of configured rings of Microthreaded cores (see 3a) and uses
a diffuse COMA memory system (allowing flexible partitioning of on-chip memory).
An SEP core allocates rings of cores to threads which can then delegate work.
Dependency rings are circuit switched, Delegation grid is packet switched

A create instruction distributes a family of threads to a ring of processors.

i - »)

4) The Microthreaded C (4 TC) System Level Language

Without Microthreading With Microthreading

- (1 thread per core) (256 threads per core)
il =-Rendering 15,000 points on 32 cores, shown after 35,000 cycles.
=-Microthreaded version is nearly 4x faster, due to latency handling o Captures ISA Extensions of uT o thread, family, place (resources) are
e Livermore Kernels NAS Integer Sort Architecture in C language captured as new C types &
. St) M= @ Intended as a compiler target @ shared type modifier shares a variable .
- « language for C, C4++ etc. between threads, as an i-structure)
N D | /*C Sum of Squares */ | /*uTC Sum of Squares */ | (
¥ : i | float a[100], b[100], sum=0; | float a[100], b[100], sum=0;
o : » thread void sgsum(shared float s) { | N
- . . | for(int i=0; i<100:j++) { | indexi; |
K T S N T T R T T S S \ | s+= afi]*a[i] + b[i]*b[i]; |
= Ghalsky Conkigata () ~inerPrcuct (3) Exuatnof St 7) = Generk CIFarian (15) _“:::epf”s | sum+:a[i]*a[i] + b[i]*b[i]; ‘ }
=Even for large numbers of cores, near theoretical-maximum- family fid; |
i erformance is achieved! 3 | Place pid; |
~ P ’ shared float sum; /* will contain result */
T Ref - | | ot S
o eferences: create (fid, pid, 0, 99, sqgsum, sum); |
K. Bousias, L. Guang, C.R. Jesshope, M. Lankamp (2008) | | sync(fid); \
Implementation and Evaluation of a Microthreaded Architecture, Example of a loop in standard C transformed into ;1 TC, with dependency captured

Journal of Systems Architecture _ — N

