
Microthreading and µTC for Massive On-Chip Concurrency

C.R. Jesshope, M.A. Hicks, M. Lankamp, R.C. Poss, T. Bernard, A. Pimintel, C. Grelck
M.W. van Tol, S. Polstra, L. Zhang, K.S. Bousias

Computer Systems Architecture Group,Informatics Institute, University of Amsterdam, Netherlands

The Computer Systems Architecture research group is tackling significant problems in the scalability of massive on-chip
concurrency. The efficacy of the massively-parallel Microgrid architecture, µTC language and associated toolchain are
demonstrated here, showing important progress in this vibrant research area. – SIREN 5th November 2009

A Microgrid of Microthreaded Cores (3b)

1) Project Motivation and Goals

Trends in microprocessor design – feature size continues to increase
in line with Moore’s Law, allowing increasing gate density on chips.
However, locality, power density and reliability are becoming limiting
factors.Processors will become distributed and multicore!
The Goals are similar in nature to all distributed systems:

Scalable and distributed architecture

Program multiple cores from (existing) sequential code

Dynamic resource and concurrency management

Support for legacy code

Our Solution is a scale invariant programming model from the ISA
level upwards.

2a) What is a Microthread?

A sequence of instructions defined to form a lightweight thread

Has it’s own microcontext of registers

Created in named, parameterised families of many threads

Smallest unit of execution in the Microthreading model

2b) The Instruction Set, Architecture and Programming Model

Microthreaded Instruction set implements blocking threads based on parameterised
families. These can capture all kinds of loops, function calls and asynchronous task
creation. Only the following instructions need to be added to an existing ISA:

create – create a named, parameterised family of blocking threads

sync – associated barrier synchronisation on named family

break – stop the execution of all other threads within current family

kill – stop the execution of all threads in a named family

Synchronised communication between adjacent threads in a family is achieved
through scalar i-structures in a large, distributed register file.

Concurrent Composition – programs are
constructed concurrently

Black line segments represent threads

Branches in threads represent the creation of
subordinate thread families (parent continues)

Synchronisation over a subordinate family

Dependencies between threads in the
same family (red lines in diagram)

3a) Individual Microthreaded Core Pipeline

1 Threads are created dynamically with a
context in synchronising memory

2 Instructions issued from the head of the
active queue read synchronising memory

3 If data is available then instruction is
executed, otherwise thread suspends on
empty register

4 When data is written, suspended threads are
rescheduled to execute

The Synchronising Memory is a large register
file that is used to control program execution.
The processor tolerates large latencies by cheap
switching between lightweight thread
contexts (from the active queue).

3b) The Microgrid Architecture (see central figure)

A Microgrid consists of configured rings of Microthreaded cores (see 3a) and uses
a diffuse COMA memory system (allowing flexible partitioning of on-chip memory).
An SEP core allocates rings of cores to threads which can then delegate work.
Dependency rings are circuit switched, Delegation grid is packet switched
A create instruction distributes a family of threads to a ring of processors.

4) The Microthreaded C (µTC) System Level Language

Captures ISA Extensions of µT
Architecture in C language

Intended as a compiler target
language for C, C++ etc.

thread, family, place (resources) are
captured as new C types

shared type modifier shares a variable
between threads, as an i-structure

Example of a loop in standard C transformed into µTC, with dependency captured

5) Experimental Results

Mandlebrot Approximation Rendering

Without Microthreading
(1 thread per core)

With Microthreading
(256 threads per core)

⇒Rendering 15,000 points on 32 cores, shown after 35,000 cycles.
⇒Microthreaded version is nearly 4× faster, due to latency handling

Livermore Kernels NAS Integer Sort

⇒Even for large numbers of cores, near theoretical-maximum-
performance is achieved!
References:
K. Bousias, L. Guang, C.R. Jesshope, M. Lankamp (2008)
Implementation and Evaluation of a Microthreaded Architecture,
Journal of Systems Architecture

*) The µTC Toolchain

Full cycle-accurate simulation of
the Microgrid with COMA

Massive Progress in toolchain
integration over last 12 months


