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Abstract. Many-core architectures are a commercial reality, but pro-
gramming them efficiently is still a challenge, especially if the mix is het-
erogeneous. Here granularity must be addressed, i.e. when to make use of
concurrency resources and when not to. We have designed a data-driven,
fine-grained concurrent execution model (SVP) that captures concur-
rency in a resource-agnostic way. Our approach separates the concern
of describing a concurrent computation from its mapping and schedul-
ing. We have implemented this model as a novel many-core architecture
programmed with a language called µTC. In this paper we demonstrate
how we achieve our goal of resource-agnostic programming on this target,
where heterogeneity is exposed as arbitrarily sized clusters of cores.

Keywords: Concurrent execution model, many core architecture, resource-
agnostic parallel programming.

1 Introduction

Although nowadays necessary, programming many-core architectures is still dif-
ficult [5]. Concurrency must be exposed, and often it is also explicitly man-
aged [8]. For example, low-level constructs must be carefully assembled to map
computations to hardware threads and achieve synchronisation without intro-
ducing deadlocks, livelocks, race conditions, etc. From a performance perspec-
tive, any overhead associated with concurrency creation and synchronisation
must be amortised with a computation of a sufficient granularity. The difficulty
of the latter is under-estimated and in this paper we argue that this mapping
task is too ill-defined statically and too complex to remain the programmer’s re-
sponsibility. With widely varying resource characteristics, generality is normally
discarded in favour of performance on a given target, requiring a full development
cycle each time the concurrency granularity evolves.

We have addressed these issues in our work on SVP (for Self-adaptive Vir-
tual Processor [2]), which combines fine-grained threads with both barrier and

1 This work is supported by the European Union through the Apple-CORE project,
grant no. FP7-ICT-215216.



dataflow synchronisation. Concurrency is created hierarchically and dependen-
cies are captured explicitly. Hierarchical composition aims to capture concur-
rency at all granularities, without the need to explicitly manage it. Threads are
not mapped to processing resources until run-time and the concurrency exploited
depends only on the resources made available dynamically. Dependencies are cap-
tured using dataflow synchronisers and threads are only scheduled for execution
when they have data to proceed. In this way, we automate thread scheduling
and support asynchrony in operations.

In the context of this paper, where SVP is implemented in a processor’s
ISA [4], we have efficient concurrency creation and synchronisation, requiring
just a few processor cycles to distribute an arbitrary number of indexed threads
to a cluster of cores. Moreover, we can tolerate long-latency operations, such as
loads from a distributed shared memory, by supporting asynchrony in individ-
ual instructions. The mapping of threads to a cluster of cores in our Microgrid
hybrid dataflow chip architecture is automatic; compiled code can express more
concurrency than is available in a cluster, and mismatches are resolved by cores
by automatically switching from space scheduling to time scheduling when hard-
ware thread slots are full. Hence, the minimal requirement for any SVP program
is a single thread slot, which implies pure sequential execution, even though
the code is expressed concurrently. It is through this technique and the latency
tolerance that we achieve resource-agnostic code with predictable performance.

The main contribution of this paper is that we show simply implemented, re-
source agnostic SVP programs that adapt automatically to the concurrency effec-
tively available in hardware and can achieve extremely high execution efficiency.
We also show that we can predict the performance of these programs based on
simple throughput calculations even in the presence of non-deterministic instruc-
tion execution times. This demonstrates the effectiveness of the self-scheduling
supported by SVP. In other words, we promote our research goal:

“Implement once, compile once, run anywhere.”

Related work SVP’s ability to define concurrency hierarchically and its data-
driven scheduling brings it close to Cilk [3] and the DDM architecture [9]. SVP
differs from DDM mainly in that synchronisation is implemented in registers
instead of cache, and that yet unsatisfied dependencies cause threads to suspend.
To our knowledge, no previous work has defined performance envelopes on hybrid
dataflow architectures based on architectural constraints.

2 The SVP concurrency model and its implementation

In SVP programs create multiple threads at once as statically homogeneous, but
dynamically heterogeneous families. The parent thread can then perform a bar-
rier wait on termination of a named family using a sync action. This fork-join
pattern captures concurrency hierarchically, from software component compo-
sition down to inner loops. A family is characterised by its index sequence, a
thread function and the definition of unidirectional dataflow channels from, to



and within the family. Channels are I-structures [1], i.e. blocking reads and single
non-blocking writes.

We have built an implementation of SVP into ISA extensions of a novel chip
architecture called the Microgrid, described in more details in [4]. In this hy-
brid dataflow architecture, SVP channels are mapped onto the cores’ registers.
Dependencies between threads mapped to the same core share the same phys-
ical registers to allow fast communication and when distributed between cores,
communication is induced automatically upon register access. The latter is still
a low-latency operation since constraints on dependency patterns ensure that
communicating cores are adjacent on chip. Implementing I-structures on the
registers also enforces scheduling dependencies between consumers and produc-
ers. Hence, long-latency operations may be allowed to complete asynchronously
giving out-of-order completion on instructions with non-deterministic delay. Ex-
amples include memory operations, floating point operations (with FPU sharing
between cores) and barrier synchronisation on termination of a family.

Also, the number of active threads per core is constrained by a block size spec-
ified for each family or by exhaustion of thread contexts. Additional expressed
concurrency is then scheduled by reusing thread contexts non-preemptively.
Deadlock freedom is guaranteed by restricting communication to forward-only
dependency chains. The dataflow scheduling, in combination with a large num-
ber of hardware threads per core, provide latency tolerance and high utilisation
of pipeline cycles.

Another key characteristic of SVP is the separation of concerns between the
program and its scheduling onto computing nodes. Space scheduling is achieved
by binding a bundle of processors, called a place, to a family upon its creation.
This can happen at any level in the program, dynamically. On the Microgrid,
places are clusters of cores implementing an SVP run-time system in hardware.

The Microgrid is targeted by a system language µTC [7] and a compiler that
maps this code to the Microgrid. µTC is not intended as an end-user language;
work is ongoing to target µTC from a data-parallel functional language [6] and
a parallelising C compiler [10].

3 Performance model and results

Our aim in this paper is to show how we can obtain deterministic performance
figures, even though the code is compiled from naive µTC code, with no knowl-
edge of the target. We evaluate results from executing a range of benchmarks
across a range of problem sizes on clusters of size 1-64 cores. These include both
sequential and parallel algorithms with various data access patterns. The results
are presented with performance on cold and warm caches.

In order to analyse the performance, we need to understand the constraints
on performance. For this we define two measures of arithmetic intensity (AI).
The first AI1 is the ratio of floating point operations to instructions issued. For
a given kernel that is not I/O bound, this limits the FP performance. For P
cores at 1 GHz, the peak performance we can expect therefore is P × AI1, the
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Fig. 1. Functional diagram of our 128 core Microgrid. There are 128 cores sharing
64 FPUs with separate add, mul, div and sqrt pipelines. Each core supports up to
256 threads in 16 families using up to 1024 integer and 512 floating-point registers.
On-chip memory consists of 32×32KB L2 caches, one per 4 cores. There are 4 rings
of 8 L2 caches; the 4 directories are connected in a top-level ring subordinated to a
master directory. Two DDR3-1600 channels connect the master directory to external
storage. The on-chip memory network implements a Cache-Only Memory Architecture
(COMA) protocol [11]: a cache line has no home location and migrates to the point
of most recent use. Each DDR channels provide 1600 million 64-bit transfers/s, i.e. a
peak bandwidth of 25.6GB/s overall; each COMA ring provides a total bandwidth of
64GB/s, shared among its participants; the bus between cores and L2 caches provides
64GB/s of bandwidth; the SVP cores are clocked at 1GHz.

ideal case of full pipeline utilisation (one apparent cycle per operation). In some
circumstances, we know that execution is constrained by dependencies between
floating point operations, so we modify AI1 to take this into account giving an
effective intensity AI ′1. The second measure of arithmetic intensity is the ratio of
FP operations to I/O operations, AI2 FLOPs/byte. I/O bandwidth IO is usually
measured at the chip boundary (25.6GB/s) unless we can identify bottlenecks
on the COMA rings (64GB/s). These I/O bandwidths are independent of the
number of cores used, so it also provides a hard performance limit.

We can then combine these two intensities to obtain a maximum performance
envelope for a given code and problem size. A program is either constrained by
AI1 if P ×AI1 ≤ AI2 × IO or AI2 when P ×AI1 ≥ AI2 × IO.

The results presented in this paper are produced using cycle-accurate emula-
tion of a Microgrid chip (Figure 1) that implements SVP in the ISA. It assumes
custom silicon with current technology [4]. It defines all states that would exist in
a silicon implementation and captures cycle-by-cycle interactions in all pipeline
stages. We have used realistic multi-ported memory structures, with queueing
and arbitration where we have more channels than ports. We also simulate the
timing of standard DDR3 channels.

3.1 Example: parallel reduction

The first example is the IP kernel from the Livermore suite, which computes the
Euclidean norm of a vector. The µTC code is given in Figure 2.

The inner function ‘ik3’ compiles to 7 instructions including 2 FP operations.
So AI1 = 2 ÷ 7 ≈ 0.29. However, every thread must wait for its predecessor to



typedef double flt;
/∗ Livermore loop 3: Inner product

Q←
∑

i
Zi ×Xi ∗/

thread LMK3 IP(shared flt Q, int N,
flt Z[N], flt X[N])

{
int P = get ncores();
create(DEFAULT; 0; P)

redk3(Qr = 0, Z, X, N/P);
sync();
Q = Qr;

}

thread redk3(shared flt Q, flt∗Z, flt ∗X, int sp)
{

index ri;
create(LOCAL; ri ∗ span; (ri+1) ∗ sp)

ik3(Qr = 0, Z, X);
sync();
Q += Qr;

}
thread ik3(shared flt Q, flt∗Z, flt ∗X) {

index i;
Q += Z[i]∗X[i];

}

Fig. 2. Inner product in µTC using a parallel reduction. Entry point LMK3 IP creates
a family at the default place, i.e. the entire cluster. The family contains P threads
where P is the number of cores. Each thread runs ‘redk3’, identified by ‘ri’. Each
‘redk3’ thread further creates one family of N/P threads running ‘ik3’. The keyword
‘LOCAL’ hints that the concurrency be kept local relative to ‘redk3’, i.e. on the same
core if ‘redk3’ is spread over multiple cores. The reduced sums trickle from the inner
family to the entry point through dataflow channel Q.

produce its result before reducing. The cost of communicating the result from
thread to thread requires between 6 and 11 cycles per add depending on the
scheduling of threads, with the difference representing the cost of waking up
a waiting thread and getting it to the read stage of the pipeline, which may
be overlapped by other independent instructions in the pipeline. This implies
2 ÷ (7 + 11) ≈ 0.11 ≤ AI ′1 ≤ 0.16 ≈ 2 ÷ (7 + 6), i.e. an expected single core
performance of 0.11 to 0.16 GFLOP/s. As shown in Figure 3 with P=1 we
observe 0.12 to 0.15 GFLOP/s, in accordance with the envelope.
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Fig. 3. IP performance, using N/P reduction. Working set: 16×#psize bytes.

For multi-core execution we parallelise using commutativity and associativity.
The (dynamic) number of cores in the ‘current place’ is exposed to programs as
a language primitive. The reduction is split in two stages: LMK3 IP creates
a family of one thread per core, which performs a local reduction and then
completes the reduction between cores. When the number of threads per core is



significantly larger than the number of cores, the cost of the final reduction is
small and the performance should scale linearly with the number of cores. Given
the single core performance of ≈ 0.15 GFLOP/s we would expect a maximum
performance of 0.15 × 64 = 9.6 GFLOP/s. However, for this code AI2 = 0.125
FLOPs/byte and so performance would be memory limited to 3.2 GFLOP/s.

We achieve only 1.4 GFLOP/s, dropping to 0.88 GFLOP/s, for cold caches
with the largest problem size. This deviation occurs when the working set does
not fit in the L2 caches, because then loads to memory must be interleaved with
line evictions. Even though evictions do not require I/O bandwidth, they do
consume COMA ring bandwidth. In the worst case a single load may evict a
cache line where the loaded line is used only by one thread before being evicted
again. A single 8 byte load could require as much as two 64-byte line transfers,
i.e. a perceived bandwidth for loads of 4 GB/s rising to 32GB/s if all 8 words are
used. This translates into a peak performance of between 0.5 and 4 GFLOP/s
with AI2 = 0.125 FLOPs/byte, when the caches become full. Note also, at a
problem size of 20K on 64 cores, between 17 and 22% of the cycles required are
for the sequential reduction, a large overhead and at a problem size of 100K,
when this overhead is significantly smaller, only 1/6th of the problem fits in
cache for up to 32 cores (1/3 for 64 cores).

With warm caches, this transition to on-chip bandwidth limited performance
is delayed and more abrupt. For P = 32 the maximum in-cache problem size
is N=16K and for P = 64, N=32K (ignoring code etc.). As would be expected
for ring-limited performance, we see peak performance at N=10K and 20K resp.
for these two cases. Any increase in problem size beyond this increases ring
bandwidth to the same level as with cold caches.

3.2 Data-parallel code

We show here the behaviour of three data-parallel algorithms which exhibit dif-
ferent, yet typical communication patterns. Again, our µTC code is a straight-
forward parallelisation of the obvious sequential implementation and does not
attempt any explicit mapping to hardware resources. The equation of state frag-
ment (ESF, Livermore kernel 7) is a data parallel kernel with a high arithmetic
intensity, AI1 = 0.48. It has 7 local accesses to the same array data by different
threads. If this locality can be exploited, then AI2 = 0.5 FLOPs/byte from off-
chip memory. Matrix-matrix product (MM, Livermore kernel 21) has significant
non-local access to data, in that every result is a combination of all input data.
MM is based on multiple inner products and hence AI1 = 0.29. However, for
cache bound problems and best case for problems that exceed the cache size,
AI2 = 3 FLOPs/byte from off-chip memory. Finally, FFT lies somewhere be-
tween these two extremes: it has a logarithmic number of stages that can exploit
reuse but has poor locality of access. Here AI1 = 0.33 and for cache-bound
problems 1.6 ≤ AI2 ≤ 2.9 (logarithmic growth with problem size if there are no
evictions). However, with evictions this is defined per FFT stage and AI2 = 0.21.

For ESF, with sufficient threads, the observed single core performance is 0.43
GFLOP/s, i.e. 90% of the expected maximum based on AI1 for this problem
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Fig. 4. Performance of the ESF. Working set: 32×#psize bytes.

(Figure 4a). Also, while the problem is cache bound, for cold caches, we see
linear speedup on up to 8 cores, 3.8 GFLOP/s. For 8 cores this problem size has
128 threads per core, reducing to 8 at 64 cores. This is an insufficient number
of threads to tolerate latency and we obtain 6.6 GFLOP/s for 64 cores, 54% of
the maximum limited by AI2 (12.3 GFLOP/s). As the problem size is increased,
cache evictions limit effective I/O bandwidth to 12.3GB/s at the largest problem
sizes, i.e. an AI2 constraint of around 6 GFLOP/s. We see saturation at 67%
of this limit for both warm and cold caches. With warm caches and smaller
problem sizes, greater speedups can be achieved (Figure 4b) and we achieve 9.87
GFLOP/s or 80% of the AI2 constrained limit for a cache bound problem.

MM naively multiplies 25×25 matrices by 25×N matrices using a local IP
algorithm. As AI2 = 3.1 FLOPs/byte, the I/O limit of 75 GFLOP/s exceeds the
theoretical peak performance, namely 9.8 GFLOP/s. Our experiments show an
actual peak of 8.7 GFLOP/s, or 88% of the maximum.

For FFT, the observed performance on one core is 0.23 GFLOP/s, or 69%
of the AI1 limit. When the number of cores and the problem size increase, the
program becomes AI2 constrained, as now every stage will require loads and
evictions, giving an effective bandwidth of 12.3GB/s and as AI2 = 0.21, an I/O
constrained limit of 2.6 GFLOP/s. We observe 2.24 GFLOP/s, or 86% of this.

Extra benchmark results are illustrated in Figure 5.

Program AI1 AI2 Bounded by Max. envelope Observed Eff.

DNRM2 (BLAS) 0.14-0.22 0.375 AI1 0.15-0.22 0.12-0.22 > 80%
MM 0.11-0.16 3.1 AI1 P×0.16 P×0.13 > 85%
ESF 0.48 0.5 AI1 P×0.48 P×0.43 > 85%
ESF (cache bound) 0.48 0.5 AI2 2-6.15 (IO=4-12.3G/s) 2.7 > 40%
FFT1D 0.33 0.21 AI1 P×0.33 P×0.23 > 65%
FFT1D (cache bound) 0.33 0.21 AI2 0.84-2.6 (IO=4-12.3G/s) 2.24 > 85%

Fig. 5. Observed performance vs. performance envelope for various kernels.



4 Conclusion

The results presented in this paper show high pipeline utilisation of single SVP
places by naive implementations of computation kernels. Moreover, we are able
to predict performance using a simple performance envelope defined by purely
architectural bandwidth constraints. Provided we have sufficient threads we ob-
serve performances that are very close (in the region of 80%) to the expected
envelope. Even in the worst cases we are within 50% of the envelope.

In other words, the SVP concurrency model facilitates the writing and gen-
eration of concurrent programs that need only be written and compiled once but
yet can still exploit efficiently the varying parallel resources provided by partic-
ular hardware configurations. On our Microgrid architectures programs can be
expressed in the µTC language free from the restraints of resource awareness;
the program only needs to express the available concurrency in algorithms and
the desired synchronisations, and the SVP implementation derives a schedule
that achieves high resource utilisation automatically.
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