
Towards an Energy Efficient Branch Prediction Scheme Using Profiling, Adaptive
Bias Measurement and Delay Region Scheduling (IEEE DTIS ’07)

M. A. HICKS∗, C. EGAN, B. CHRISTIANSON AND P. QUICK
Compiler Technology and Computer Architecture Research Group

University of Hertfordshire
∗m.hicks@herts.ac.uk

ABSTRACT

Dynamic branch predictors can account for over 10% of a processor’s power
consumption. This power cost is proportional to the number of accesses made
to that dynamic predictor during a program’s execution. In this work we pro-
pose the combined use of local delay region scheduling and profiling with an
original adaptive branch bias measurement. Our adaptive branch bias mea-
surement takes note of the dynamic predictor’s accuracy for a given branch
and decides whether or not to assign a static prediction for that branch. The
static prediction and local delay region scheduling information is represented
as two hint bits in branch instructions. We show that, with the combined use of
these two methods, the number of dynamic branch predictor accesses/updates
can be reduced by up to 62%. The associated average power saving is very
encouraging; for the example high-performance embedded architecture n av-
erage global processor power saving of 6.22% is achieved.

1 Introduction

The latency associated with branch instructions can be overcome by various
means. Currently, state-of-the-art processors tend to use dynamic branch pre-
diction, but the use of dynamic predictors can consume large amounts of the
power budget. In current processors, a branch predictor can consume over
10% of the overall CPU power budget. The power cost is directly proportional
to the number of accesses made to the dynamic predictor.

However, even though a dynamic predictor uses a great deal of power, the
increased prediction accuracy and improved processor performance it pro-
vides results in power saving by the reduced number of branch mispredictions,
negating the necessity of stalling the processor. In this work, we present an ap-
proach for reducing the number of accesses and updates made to a dynamic
branch predictor that combines scheduling the local delay region with profil-
ing using an adaptive bias measurement. Encouraging experimental results
are shown.

2 Biased Branches

In many cases the direction of a branch tends to be biased to either the taken
path or to the not-taken path and therefore demonstrates a skewed distribu-
tion. In this work, we use profiled branch prediction in conjunction with a
dynamic predictor. The idea of profiled branch prediction is to avoid accessing
the dynamic predictor whenever possible, thereby saving power. However,
the profiled static prediction must be accurate to ensure that there is no impact
on dynamic prediction accuracy, since inaccurate predictions are expensive in
terms of both performance and power.

In the static code the number of biased branches appears to be small, but dur-
ing program execution biased branches tend to be executed repeatedly and are
therefore executed frequently.

Previous approaches have associated static predictions with biased branches
by using a fixed biased level to decide whether a branch is biased or not. This
is far less accurate than a typical dynamic branch prediction. In our approach
we take such problems into account, and we propose the use of the adaptive
branch bias measurement technique through profiling and local delay region
scheduling.

3 Profiling

Profiling, in this case, refers to the observation of a given program, at the as-
sembly/machine level, while undergoing execution with a sample dataset.This
means each branch instruction can be monitored in the form of a program trace
by a detailed history of selected instructions and any relevant information ex-
tracted and used to form profiled static predictions where possible. A profiler
is any application/system which can produce such data by observing a run-
ning program. The number of datasets that any given program is profiled
with will affect the likely ‘real’ accuracy of the profiling results. Profiled traces
permit the exact bias of a branch instruction to be known resulting in higher
prediction accuracies.

Requested Stats

Execution
Result

Program
To Be
Profiled

Profile Options

Profiler

CPU

Example of Profiling

3.1 Adaptive Bias Measurement

Profiled static hints will be out performed by dynamic prediction for many
branches unless the hinting bias level is set so high that only extremely bi-
ased branches are removed and therefore profiling should be used with due
caution. Consequently, we only only assign a profiled prediction to a branch
where avoiding dynamic prediction has no significant negative impact on that
branch’s dynamic prediction accuracy. When profiling each branch in a pro-
gram’s execution, our profiler records the directional history for each branch,
and also the prediction history. From this record or trace, we compute whether
a branch’s bias is equal to, or greater than its associated prediction accuracy
from the dynamic predictor. This computation is key to the results we present
in this work. Assuming a program is profiled against an adequately varied
data set, we show that these branches can safely be removed from dynamic
prediction through the use of profiled hint bits.

4 Local Delay Region Scheduling

Local delay region scheduling is the process of scheduling branch independent
instructions from before the branch in the same basic-block into the branch de-
lay slots to be executed by the processor after the branch. A branch indepen-
dent instruction is any instruction whose result is not directly, or indirectly, de-
pended upon by the branch to compute its own behaviour. The locally sched-
uled delay region, for a given branch, is executed irrespective of the branch
direction outcome, and removes the need to predict for any branch where it
can be used.

Simple Local Delay Region Scheduling (2 Delay Slots)

5 Hardware Implementation/Hint-Bits

The hardware requires support for the following behaviours:

1. Statically predict taken. Do not access, or update, the dynamic predictor
for this branch.

2. Statically predict not-taken. Do not access, or update, the dynamic pre-
dictor for this branch.

3. Use the locally scheduled delay region. Do not access, or update, the
dynamic predictor for this branch.

4. Use the dynamic predictor.

0   0 Branch Instruction

Hint-Bits in Branch Instruction Format

These behaviours are represented using two additional bits in branch instruc-
tions (hint-bits), but with a special power saving implementation that avoids
accessing/updating the dynamic branch predictor for those branches that are
assigned hints. These modifications are in the Instruction Fetch and EXEcution
pipeline stages.

PC + 4

Direction
Predictor

Target
Branch

Buffer

PC

Access predictor?

Instruction Cache

Hint
Direction

Offset Target H

Decoder

Delay Region
Local

Simple

Logic Modifications Required in IF Pipeline Stage

6 Scheduling & Hinting Algorithm

7 Experimentation

The proposed ‘Combined Algorithm’ was applied to the EEMBC benchmark
suite. The performance was then evaluated using a modified version of the
Wattch power analysis processor simulator (itself a version of SimpleScalar).
Baseline Configuration: 2-Way Issue, 3 Delay Slots, GShare Branch Predic-
tor, 512 Entry BTB, Non-Ideal Conditional Clocking, ‘GCC -O2’.

7.1 Results

Percentage of Accesses/Updates of Branch Predictor Avoided

Global Processor Energy Saving Per Committed Instruction (%)

8 Conclusions

• Around 63% of dynamic branch predictor accesses can be prevented us-
ing this algorithm

• On the experimental baseline this results in a global power saving of over
6%

• Branch prediction accuracy is not decreased (in fact, in many cases it is
improved)

• Minimal hardware modifications are required

References
[1] Parikh, D., Skadron, K., Zhang, Y., Stan, M.: Power aware branch prediction: Char-

acterization and design. IEEE Transactions On Computers 53(2) (February 2004)

[2] Hicks, M., Egan, C., Christianson, B., Quick, P.: Towards an energy efficent branch
prediction scheme using profiling, adaptive bias measurement and delay region
scheduling. In: Design and Technology of Integrated Systems, IEEE (September
2007)


